Lecture 5 Review

• Current Source
• Active Load
• Modified Large / Small Signal Models
 – Channel Length Modulation

• Text sec 1.2 pp. 28-32; sec 3.2 pp. 128-129
Current source

- Ideal goal
- Small signal model:
 Open circuit
 "RD=∞"
Realizing current source: MOSFET

- Large signal nonideality: Compliance range
- “Looks like” current source only for $V_{DS} > V_{eff}$
MOSFET I_D-V_{DS} characteristic for fixed V_{GS}

- Small-signal nonideality: slope in active region
Cause: Channel length modulation
Channel length modulation

$V_S = 0$

$V_{GS} = +3V$

$V_{DS} = +3V$

ΔL

$\Delta V - V_{tn}$
Channel length modulation

$V_s = 0$

$V_{GS} = +3V$

L_{eff}

$V_{DS} = +4V$

$\Delta V - V_{tn}$

ΔL

$V_{tn} = +1V$

$V_{GS} = +3V$

$V_{DS} = +4V$
Modify small-signal model: Finite r_{ds} current source

- **Slope** = $\Delta I/\Delta V$

$$r_{ds} = \frac{\Delta V}{\Delta I}$$

$$SLOPE = \frac{\Delta I}{\Delta V} = \frac{1}{r_{ds}}$$

- **Ideal:**
 - zero slope
 - $r_{ds} = \infty$
Caution: $r_{DS(on)}$ vs. r_{ds} confusion!

$r_{DS(on)}$
- Triode region
- Large signal
- True resistance (V-I through origin)

r_{ds}
- Active region
- Small signal
- Models nonideality of current source
Refined MOSFET Small Signal Model

- Add r_{ds} in parallel with $g_m v_g$ current source at output
- SAME FOR N-ch, P-ch
- How to relate r_{ds} to DC operating point?
- Example: $g_m = 2I_D/V_{eff}$
I_D- V_{DS} Characteristic for Different V_{GS}

"Family" of curves
I_D - V_{DS} Characteristic for Different V_{GS}

Extrapolate backward: intersect at V_{DS}-axis
1/slope provides small signal resistance r_{ds}

- Intersect at $-1/\lambda$

Slope:

\[
\frac{1}{r_{ds}} = \frac{I_D}{1/\lambda} \quad r_{ds} = \frac{1}{\lambda I_D}
\]
MOSFET small signal model

\[g_m = \frac{2I_D}{V_{eff}} \quad r_{ds} = \frac{1}{\Box I_D} \]
Increasing Gain

• Typical gain (resistive load)
 – Lab 4 example: $|a_v| \approx 2$
 – Class example: $|a_v| \approx 11.1$

• How to increase a_v?
Transconductance g_m

- **Definition**

\[g_m = \frac{dI_D}{dV_{GS}} \]
Transconductance g_m

- **Definition**

 $$g_m = \frac{dI_D}{dV_{GS}}$$

- **I_D from Square law:**

 $$\frac{dI_D}{dV_{GS}} = \frac{d}{dV_{GS}} nC_{ox} \frac{W_2}{L_2} \left(\frac{V_{GS}}{V_{eff}} - V_{tn}\right)^2$$

- **g_m in terms of W/L, V_{eff}**

 $$g_m = nC_{ox} \frac{W_2}{L_2} V_{eff}$$
Summary of g_m expressions

- All equivalent! choose whichever gives easier math
- Can’t memorize? rederive from definition of g_m

\[
g_m = \Box_n C_{ox} \frac{W_2}{L_2} V_{eff}
\]

\[
g_m = \frac{2I_D}{V_{eff}}
\]

\[
g_m = \sqrt{2\Box_n C_{ox} \frac{W}{L} I_D}
\]
Common source circuit (Lab 4)

Setting operating point:
Adjusted function generator offset for DC output at midpoint of signal swing
Common source circuit (Lab 4)

• DC operating point
• Chosen for “halfway” between rails
• $I_D=1.25\text{mA}$
• $V_{\text{eff}} \approx 2.0\text{V}$ (depends on parameters)

\[V_{\text{OUT}} = V_{DD} - I_D R_D \]
\[V_{\text{OUT}} = +2.5\text{V} \]
\[I_D = \frac{V_{DD} - V_{\text{OUT}}}{R_D} \]
\[= \frac{5\text{V} - 2.5\text{V}}{2\text{k}\Omega} = 1.25\text{mA} \]
Common source circuit (Lab 4)

- Small signal gain magnitude = 2.5

 \[g_m = \frac{2I_D}{V_{eff}} = \frac{2(1.25\text{mA})}{2.0\text{V}} \]

 \[g_m = 1.25\text{mA} / \text{V} \]

 \[a_v = g_m R_D = (1.25\text{mA} / \text{V})(2 \text{ k}\Omega) \]

 \[a_v = 2.5 \]

- Not impressive!
How to increase a_v?

Look at gain expression: $a_v = \left| g_m R_D \right|$
Increase R_D

- New $R_D = 10k\Omega$ (5X old value)
- Problem:
 - DC operating point
 - Violates condition for active region: triode!
- DC operating point stuck at negative rail

\[
V_{OUT} = V_{DD} \cdot I_D R_D
\]
\[
V_{OUT} = 5V \cdot \left(1.25mA\right) \left(10k\Omega\right) = 12.5V
\]
\[
V_{OUT} = \square7.5V?
\]
Look at problem symbolically

- Use $g_m = 2I_D/V_{eff}$

- $I_D R_D = $ DC drop on load

- Optimal bias at output: constrained to $V_{DD}/2$

- I_D, R_D not involved!

- Value of approximate symbolic approach vs. “exact” numerical results from simulation
How to increase gain (resistive load)

• increase V_{DD}
 – usually fixed by application, process
• decrease V_{eff}
 – does increase g_m
 – but ...

$$|a_v| = \frac{V_{DD}}{V_{eff}}$$
Problems decreasing V_{eff}

- V_{eff}, W/L g_m expression:
- 2X increase in g_m:
 - 4X increase in size
 - (can’t increase $I_D R_D$)
- Increased area:
 - cost penalty
- Increased capacitance
 - speed penalty
- $V_{\text{eff}} < \approx 200$ mV: subthreshold region
 - Not square law: g_m expressions invalid

$$g_m = \sqrt{2 \Box_n C_{ox} \frac{W}{L} I_D}$$
Increase a_v: Different approach

• Give up on resistive load ...
• What is highest resistance?
Increasing a_v: Different approach

- What is highest resistance?
- Infinite: open circuit

Problem: no path for I_D

- Any circuit element that:
 – provides DC current, but
 – is open circuit in small signal model?
Current source!

- Open in small signal model
- Realizing current source: MOSFET
Lab Circuit: MOSFET with active load

- Small signal model for M1
- Thevenin equivalent “looking into” drain of M2 (see text sec. 3.1)
Small signal model

M1 common source

M2 Thevenin equivalent
Simplify small signal model

Combine r_{ds1}, r_{ds2} in parallel
Small signal gain

\[
\frac{v_{out}}{v_{in}} = a_v = -g_{m1}(r_{ds1} || r_{ds2})
\]
Current source load: Large signal considerations

Output swing limits

- **Top:** M2 “crash” into triode
- **Bottom:** M1 crash into triode
Common Source with Active Load

- DC Sweep Schematic
Active Load Simulation Result (DC Sweep)

Top limit: $V_{DD} - V_{eff2}$

Bottom limit: $V_{SS} + V_{eff1}$
Determining DC Operating Point

Set small signal $v_{in} = 0$
Determining DC Operating Point

- **Active region:**
 V_{eff} determines I_D
- **Correct V_{IN}:**
 M1, M2 “agree”
- **Example:**
 $V_{\text{eff1}} = 1.0\, \text{V}$
 $I_D = 100\, \mu\text{A}$
If DC bias at input is “wrong”?

- Current source "disagreement"
- KCL crisis at output: 2µA, nowhere to go
- What happens?
If DC bias at input is “wrong”?

- Capacitance at output node V_{out}
- $2\mu A$ flows into cap, charges up
 - V_{DS1} increases
 - I_1 increases
- V_{DS2} decreases
 - I_1 decreases
- Changes in V_{DS} cause changes in I_D until “agreement” is reached: $I_{D1} = I_{D2}$
How much change in V_{DS}?

- Changes in V_{DS} cause changes in I_D until “agreement” is reached: $I_{D1} = I_{D2}$ BUT
- Active region: I_D is a weak function of V_{DS}
- Large change in V_{DS} for small change in I_D
- Output very sensitive to changes in I_D:
 - Small ΔV_{eff} at input \Rightarrow Small ΔI_D \Rightarrow
 - Requires large ΔV_{DS} at output for I_D agreement

Good: high voltage gain

Bad: tricky to get correct input bias point
Frequency Domain Considerations

• Ideal op-amp goals:
 – Infinite gain
 – Infinite bandwidth
• Active load helps gain
• What about bandwidth?
Frequency Domain Analysis

- Start simple: Assume single C_L at output
- (Ignore MOS capacitances for now ...)
- Find transfer function v_{out}/v_{in}
- Combine $r_{ds1} || r_{ds2} = r_{out}$
Simpler small signal model

- Combine $r_{out} \ C_L$ into impedance Z_L
Simplified Small Signal Model

- Small signal gain: \(v_{out}/v_{in} = a_v = -g_m Z_L \)
- Frequency dependence of \(Z_L \) provides frequency dependence of transfer function
Closer Look at Z_L:

- Impedance is parallel combination of r_{out}, $1/sC_L$

$$Z_L = r_{out} \frac{1}{sC_L} = \frac{1}{\frac{1}{r_{out}} + sC_L}$$

$$Z_L = \frac{r_{out}}{1 + sr_{out}C_L}$$
Behavior of Z_L over frequency:

- Let $s = j\omega$

 $$Z_L = \frac{r_{out}}{1 + j\omega r_{out}C_L}$$

- Low frequency limit: mostly r_{out}

 $$\omega \ll \frac{1}{r_{out}C_L} \quad Z_L = \frac{r_{out}}{1 + j\omega r_{out}C_L} \quad r_{out}$$

- High frequency limit: mostly C_L

 $$\omega \gg \frac{1}{r_{out}C_L} \quad Z_L = \frac{r_{out}}{1 + j\omega r_{out}C_L} \quad \frac{r_{out}}{j\omega r_{out}C_L} \quad \frac{1}{j\omega C_L}$$
Transfer function

• Substitute in Z_L

$$\frac{v_{out}}{v_{in}} = \square g_m Z_L = \frac{\square g_m r_{out}}{1 + \square j r_{out} C_L}$$

• Magnitude

$$\left| \frac{v_{out}}{v_{in}} \right| = \frac{g_m r_{out}}{\sqrt{1 + (\square r_{out} C_L)^2}}$$
Bode Plot of Transfer Function Magnitude

\[\left| \frac{V_{out}}{V_{in}} \right| = \frac{g_m r_{out}}{\sqrt{1 + (\omega r_{out} C_L)^2}} \]

Bandwidth: \[\Omega_{3dB} \]
3-dB Frequency / Bandwidth

- Frequency at which magnitude is 3 dB down (reduced by factor $1/\sqrt{2}$)

$$\max \left| \frac{v_{out}}{v_{in}} \right| = g_m r_{out} \quad AT \bigotimes = 0$$

THEN $AT \bigotimes_{3dB}, \left| \frac{v_{out}}{v_{in}} \right| = \frac{1}{\sqrt{2}} g_m r_{out}$

$$\frac{1}{\sqrt{2}} g_m r_{out} = \frac{g_m r_{out}}{\sqrt{1 + (\bigotimes_{3dB} r_{out} C_L)^2}} \bigotimes \bigotimes_{3dB} = \frac{1}{r_{out} C_L}$$
Revisit Bode Plot:

- Gain, Bandwidth inversely related!

\[\omega_{3dB} = \frac{1}{r_{out} C_L} \]
Unity Gain Frequency \square_T / Gain-Bandwidth Product

- \square_T: Frequency at which magnitude is 1
 Use approximation $\square_T \gg 1/r_{out}C_L$

$$1 = \frac{g_m r_{out}}{\sqrt{1 + (\square_T r_{out} C_L)^2}} \quad \frac{g_m r_{out}}{\sqrt{(\square_T r_{out} C_L)^2}} \quad \square_T = \frac{g_m}{C_L}$$

- Gain x Bandwidth Product

$$a_v = g_m r_{out} \quad \square_{3dB} = \frac{1}{r_{out} C_L} \quad \frac{g_m r_{out}}{GAIN} \cdot \frac{1}{r_{out} C_L} \quad = \frac{g_m}{C_L}$$

- Independent of r_{out}!
 - Poorly controlled r_{out} OK
Summary: Active Load

• Active load DC considerations:
 – Output swing limited by triode “crash”
 – To voltage within V_{eff} of rail

• Active load good news / bad news:
 – Good news: high gain
 – Bad news: very sensitive to input DC bias
Massage small signal gain result

- **Small signal gain**

$$|a_v| = g_m \left(\frac{1}{r_{ds1}} \parallel \frac{1}{r_{ds2}} \right)$$

$$r_{ds1} \parallel r_{ds2} = \frac{1}{\frac{1}{r_{ds1}} + \frac{1}{r_{ds2}}}$$

- **Look at parallel combination**

- **Substitute expression for** r_{ds}

$$r_{ds1} \parallel r_{ds2} = \frac{1}{\Box_1 I_D + \Box_2 I_D}$$

$$r_{ds1} \parallel r_{ds2} = \frac{1}{(\Box_1 + \Box_2) I_D}$$
Massage small signal gain result

• Small signal gain

\[|a_v| = g_{m1} \left(r_{ds1} \parallel r_{ds2} \right) \]

• Substitute for \(g_m \), parallel \(r_{ds} \)

\[|a_v| = \frac{2 I_D}{V_{eff1} \left(\square_1 + \square_2 \right) I_D} \frac{1}{g_{m1} r_{ds1} \parallel r_{ds2}} \]

\[|a_v| = \frac{2}{\left(\square_1 + \square_2 \right) V_{eff1}} \]

Only \(\square, V_{eff} \) to work with
Improve Gain

• Reduce V_{eff}
 – Minimum \approx 200 to 300mV (subthreshold)
 – May not want to go that low (W,L too big)

• Reduce l_1, l_2
 – How? Where does l_1 come from?
Square law model with channel length mod

\[
I_D = \frac{\mu_n C_{ox}}{2} \left(\frac{W}{L} (V_{GS} - V_{tn}) \right)^2 \left[1 + \lambda \left(V_{DS} - V_{eff} \right) \right]
\]

\[I_D \text{-sat term (at pinchoff) + "extra"}\]
Square law model with channel length modulation

\[I_D = \frac{\Box n C_{ox}}{2} \frac{W}{L} (V_{GS} \Box V_{tn})^2 \left[1 + \Box (V_{DS} \Box V_{eff}) \right] \]

- Fractional extra part is \(\Box (V_{DS} - V_{eff}) \)
- Meaning of \(\Box \):
 Fractional change in current \(I_D \) per volt change in \(V_{DS} \)
What causes change? Where does \(L \) come from?

- Change in effective channel length \(L \)
- One way to reduce \(L \): longer \(L \)
- Change \(\Delta L \) represents smaller fraction
After some semiconductor physics ...

- Definition of \(\square \)
 \[
 \square = \frac{I_D/I_D}{V_{DS}}
 \]

- Fractional change
 \[
 \frac{I_D}{I_D} = \frac{L}{L}
 \]
 \[
 \square = \frac{1}{L} \frac{L}{V_{DS}}
 \]

- Semiconductor physics ...
 (see J&M p. 26)

- \(K_S \) Silicon dielectric constant 11.8
- \(N_{SUB} \) Substrate doping units /cm\(^3\)
 Sanity check: 1E+14 to 1E+17
- \(\Delta V_{DS} \) from active-triode edge to “large” \(V_{DS} \)
- Caution: consistent length units on \(L, N_{SUB}, \square_0 \)
Substrate doping NSUB parameter

- Needed for SPICE

Extraction procedure:

1) Calculate slope from I_D-V_{DS} plot
2) $r_{ds} = 1/\text{slope} \ (\text{small signal model})$
3) Calculate $[]$
4) Calculate NSUB
Example

V_{DS}-I_D data from Lab 5 for P-channel MOSFET:

SLOPE IN ACTIVE REGION = $1/r_{ds}$

$r_{ds} = \frac{1.93V}{48 \mu A} = 40.2 \text{ kQ}$
1) Calculate slope from I_D-V_{DS} plot
2) $r_{ds} = 1/$slope (small signal model)
3) Calculate \(\omega \)

\[
\omega = \frac{1}{I_D \cdot r_{ds}} = \frac{1}{(482 \ \mu A)(40.2 \ k\Omega)} = \frac{1}{19.4 \ V} = 0.052 \ V^{-1}
\]
4) calculate NSUB

\[\Theta = \frac{1}{L \sqrt{\frac{2K_S \rho_0}{qN_{SUB}}} \frac{1}{2\sqrt{V_{DS} \cdot V_{eff}}}} \]

\[
0.052V^{\frac{1}{1}} = \frac{1}{(1E \cdot 5m)} \sqrt{\frac{2(11.8)(8.85E \cdot 12F/m)}{(1.6E \cdot 19coul)N_{SUB}}} \frac{1}{2\sqrt{4.48V \cdot 0.84V}}
\]

\[N_{SUB} = 3.32E + 22 \text{ m}^3 = 3.32E + 16 \text{ cm}^3 \]

- For CD4007, \(L = 10\mu m = 1.0E-5m \)
- \(V_{DS}, V_{eff} \) for largest \(V_{DS} \) data point
Simulation exercise

- Add NSUB to N-channel, P-channel models
- DC sweep for CS Amplifier with Active Load
Common Source with Active Load (DC)

- Sweep input over full range 0 to +5V
DC Sweep Around Operating Point

DC Response

\(e = \frac{\text{Vout}}{V} \)

\(dc \, (V) \):

- A
- B

Voltage Range:
- 0.0 to 5.0

Voltage Axis:
- 0.0 to 5.0

DC Voltage Range:
- 2.0 to 3.0

Graph shows the relationship between the output voltage (Vout) and the dc voltage (V) around a specific operating point.