N-Channel MOSFET Operating Regions

<table>
<thead>
<tr>
<th>Gate</th>
<th>Drain</th>
<th>Region</th>
<th>First Order Behavior</th>
<th>Not Exactly:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{GS} > V_{TH}$</td>
<td>$V_{DS} > V_{GS} - V_{TH}$</td>
<td>Saturation (Active)</td>
<td>Drain "Looks Like" Current Source; I_D Depends Only on $V_{GS} - V_{TH}$ $I_D = \frac{\mu_n C_{ox} W}{2L} (V_{GS} - V_{TH})^2$</td>
<td>Channel Length Modulation I_D Depends Somewhat on V_{DS} $I_D = \frac{\mu_n C_{ox} W}{2L} (V_{GS} - V_{TH})^2 [1 + \lambda V_{DS}]$</td>
</tr>
<tr>
<td>$V_{GS} < V_{TH}$</td>
<td>$V_{DS} < V_{GS} - V_{TH}$</td>
<td>Triode</td>
<td>D-S Channel "Looks" Resistive $I_D = V_{DS} / R_{on}$ R_{on} Depends on $V_{GS} - V_{TH}$</td>
<td>Nonlinear as V_{DS} Increases $I_D = \frac{\mu_n C_{ox} W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{V_{DS}^2}{2} \right]$</td>
</tr>
<tr>
<td>$V_{GS} < V_{TH}$</td>
<td>$</td>
<td>V_{DS}</td>
<td>< V_{th}$</td>
<td>Cutoff</td>
</tr>
</tbody>
</table>

Diagram:
- **Id** vs. V_{GS} and V_{DS}
- **Active** vs. **Triode** vs. **Cutoff**
- **Increasing** V_{GS}
- **Transconductance** $\frac{dI_D}{dV_{GS}}$ vs. V_{GS}
- **Breakdown** if $|V_{DS}|$ Exceeds V_{th}
P-Channel MOSFET Operating Regions

<table>
<thead>
<tr>
<th>GATE</th>
<th>DRAIN</th>
<th>REGION</th>
<th>FIRST ORDER BEHAVIOR</th>
<th>NOT EXACTLY:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_{DS} < V_{GS} - V_{TH}$</td>
<td>SATURATION (ACTIVE)</td>
<td>DRAIN "LOOKS LIKE" CURRENT SOURCE; I_D DEPENDS ONLY ON $V_{GS} - V_{TH}$</td>
<td>CHANNEL LENGTH MODULATION I_D DEPENDS SOMEWHER ON V_{DS}</td>
</tr>
<tr>
<td>$V_{GS} < V_{TH}$</td>
<td>$V_{DS} > V_{GS} - V_{TH}$</td>
<td>TRIODE</td>
<td>$I_D = \frac{\mu_p C_{ox} W}{2 L} (V_{GS} - V_{TH})^2$</td>
<td>$I_D = -\frac{\mu_p C_{ox} W}{2 L} (V_{GS} - V_{TH})^2 [1 + \lambda</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>V_{DS}</td>
<td>< V_{bkd}$</td>
<td>CUTOFF</td>
</tr>
</tbody>
</table>

Diagrams:
- ** Define $+I_D$**
- **Negative MORE SATURATION (ACTIVE)**
- **Negative TRANSISTOR**
- **Negative TRANSCONDUCTANCE**
- **Negative SLOPE**
- **Negative VTH**
- **Negative ID**
- **Negative VDS**
- **Negative VGS**
3) [MOSFET operating region practice]

For each MOSFET below, determine the MOSFET operating region (active, triode, cutoff). Assume NMOS $V_{TH} = +1V$ and PMOS $V_{TH} = -1V$.

a)

$V_G = +3V$
$V_GS = +3V$
$V_D = +5V$
$V_DS = +5V$

$V_{GS} > V_{TH} ?$
$+3V > +1V$ (CUT OFF)

$V_{DS} < V_{GS} - V_{TH} ?$
$+5V < 3V - 1V$
$2V$

$V_{DS} > V_{GS} - V_{TH}$

(b)
4) [More MOSFET operating region practice]

For each MOSFET below, determine

a) the MOSFET operating region (active, triode, cutoff), and
b) the drain voltage V_D and the DC drain current I_D.

Assume NMOS $V_{TH} = +1\text{V}$ and PMOS $V_{TH} = -1\text{V}$.

For both NMOS and PMOS, assume $\mu C_{ox} \frac{W}{L} = 2.0E-4 \frac{A}{V^2}$

\[
\text{a)} \quad V_{GS} \rightarrow I_D \rightarrow V_D = V_{DD} - I_D R_D
\]

\[
R_D = \frac{V_{DD}}{I_D} = \frac{100k\Omega}{100mA} = 1k\Omega
\]

\[
I_D = \frac{V_{GS} - V_{TH}}{R_D} = \frac{V_{GS} - 1V}{1k\Omega} = \frac{3V - 1V}{1k\Omega} = 2A
\]

\[
V_D = V_{DD} - I_D R_D = 5V - 2A \times 1k\Omega = 3V
\]

\[
I_D = \frac{V_{GS} - V_{TH}}{R_D} = \frac{1A}{1k\Omega} = 1A
\]

\[
V_D = V_{DD} - I_D R_D = 5V - 1A \times 1k\Omega = 4V
\]

\[
\text{b)} \quad V_{GS} \rightarrow I_D \rightarrow V_D = V_{DD} - I_D R_D
\]

\[
R_D = \frac{V_{DD}}{I_D} = \frac{100k\Omega}{100mA} = 1k\Omega
\]

\[
I_D = \frac{V_{GS} - V_{TH}}{R_D} = \frac{V_{GS} - 1V}{1k\Omega} = \frac{3V - 1V}{1k\Omega} = 2A
\]

\[
V_D = V_{DD} - I_D R_D = 5V - 2A \times 1k\Omega = 3V
\]

\[
I_D = \frac{V_{GS} - V_{TH}}{R_D} = \frac{1A}{1k\Omega} = 1A
\]

\[
V_D = V_{DD} - I_D R_D = 5V - 1A \times 1k\Omega = 4V
\]

\[
\text{c)} \quad V_{GS} \rightarrow I_D \rightarrow V_D = V_{DD} - I_D R_D
\]

\[
R_D = \frac{V_{DD}}{I_D} = \frac{100k\Omega}{100mA} = 1k\Omega
\]

\[
I_D = \frac{V_{GS} - V_{TH}}{R_D} = \frac{V_{GS} - 1V}{1k\Omega} = \frac{3V - 1V}{1k\Omega} = 2A
\]

\[
V_D = V_{DD} - I_D R_D = 5V - 2A \times 1k\Omega = 3V
\]

\[
I_D = \frac{V_{GS} - V_{TH}}{R_D} = \frac{1A}{1k\Omega} = 1A
\]

\[
V_D = V_{DD} - I_D R_D = 5V - 1A \times 1k\Omega = 4V
\]
Sec. 3.2 Common-Source Stage

1. $V_{IN} = 0$ INCREASING
 $V_{IN} < V_{TH}$: CUTOFF: $I_D = 0$
 $V_{OUT} = V_{DD}$

2. V_{GS} A LITTLE $> V_{TH}$ $V_{GS} - V_{TH}$ SMALL
 $V_{DS} \approx V_{DD}$ BIG \leftarrow ACTIVE
 $V_{OUT} = V_{DD} - \frac{M_{COX} W}{2} \left(V_{IN} - V_{TH} \right)^2 R_D$
 I_D FROM S & LAW

3. $V_{DS} \leq (V_{GS} - V_{TH})$ "TRIODE CRASH"

AMPLIFIER!? WANT: V_{OUT}

$V_{OUT} = A V_{IN}$

HOW WELL DOES CS DO AMPLIFIER??

1. CUTOFF
2. ACTIVE
3. TRIODE

LINEAR APPROXIMATION "small signal"

CALL THIS "ZERO" "OPERATING POINT"

BIGGER OUTPUT CHANGE
ΔV_{OUT} SLOPE: "small signal gain"

Small input change
V_{IN}

ΔV_{IN}
INCREMENTAL (SMALL SIGNAL) ANALYSIS

What it is
A method of analysis that allows us to get approximate analytic expressions (equations) for nonlinear circuits which can't be solved easily.
Concept: "Take derivative first"

Why you do it
Linear signal analysis is such a powerful tool, we're going to use it to analyze systems that aren't linear. Anything (even a nonlinear circuit element) looks linear if you look at small enough changes from an operating point.

PROCEDURE:

1. First, find the DC (large signal) operating point for each element in the nonlinear circuit.

 Possible methods:
 - Solve nonlinear equations (e.g. quadratic for active region MOSFET square-law model)
 - Iteratively solve nonlinear equations (e.g. SPICE)
 - Approximate analysis (e.g. for BJT, assume $V_{BE} = 0.7V$ in active region)
 - Graphical technique

Small signal solution will "ride on" bias levels provided by large signal operating point solution

2. Redraw the circuit: replace each circuit element with its small-signal model
 - Linear elements (e.g. pure R, L, C) stay the same
 - Constant V/I Sources: Gone! ("take derivative first"):
 - DC voltage sources: replace with short circuit
 - DC current sources: replace with open circuit
 - Nonlinear element: Replace with small-signal model
 - For each type of device, small-signal model is obtained by taking derivative of appropriate terminal characteristic to find linear approximation for behavior around operating point.
 - Usually just do this once for each type of device; small signal model parameters are a function of large signal operating point (e.g. small signal MOSFET model derived once; then for each application of model use operating point information to calculate small signal parameters).
3. Solve the small-signal circuit model using all the linear analysis tools you know and love:

Good Old Ohm's Law
All V-I characteristics are linear in small-signal model

Can use Thevenin's theorem to simplify large circuits
Attack them one block at a time
Helps to understand functions of each block; how well actual circuit is performing function

Can use superposition to calculate response to different inputs
Attack output behavior one signal at a time
Helps to understand response (output) as caused by each input

Can use transfer functions to express frequency-dependent behavior

Can always use KVL, KCL, nodal analysis
(apply to any circuit, linear or nonlinear)

4. Total behavior is sum of DC (large signal) operating point + small signal component "riding on" DC bias from large signal operating point solution

Cautions

Limitations
If actual signal isn't "small", then "solution" won't be valid!
How small is "small"? Depends on accuracy required. Need to look at derivation of model for individual devices used.

Common errors
Don't get large signal, small signal quantities confused! For example:
There should be no DC sources (e.g. supply rails) in a small signal model.
SMALL SIGNAL ANALYSIS SUMMARY

CIRCUIT

\[V_{DD} = +5V \]
\[R_D = 10k\Omega \]
\[V_{IN} = +1.06V \]

MOSFET:
\[\mu C_{ox} = 7.42E-5 \, \text{A/V}^2 \]
\[V_t = 0.61V \]

LARGE SIGNAL MODEL

\[V_{DD} = +5V \]
\[V_{IN} = +1.06V \]
\[V_{OSS} = 8.0 \, \text{V} \]
\[V_{GS} = \text{SQUARE LAW} \]
\[I_D = I_{Vgs} \]

SMALL SIGNAL MODEL

\[V_{OSS} = 2.4V \]
\[V_{OUT} = i_d R_D \]

DC VOLTAGES
\[\text{SIGNAL GROUND} \]

SIGNAL GROUND

\[i_d = g_m V_{gs} \]

TRANCONDUCTANCE \(g_m \) FROM DC BIAS
\[g_m = 7.42E-5 \, \frac{80}{2.4} \, (1.06 - 0.61) \]
\[g_m = 1.11 \, \text{mA/V} \]

\[V_{OUT} = -i_d R_D = -\frac{g_m V_{gs}}{V_{IN}} R_D = \frac{(-g_m R_D) V_{IN}}{V_{IN}} \]
\[V_{OUT} = -11.1 \]

SMALL SIGNAL GAIN
\[\frac{V_{OUT}}{V_{IN}} = -g_m R_D \]

\[V_{OUT} = +2.49 \, \text{V} \]
\[2.49V > 0.45V \]

OVERDRIVE

\[V_{DS} > V_{eff} \, \text{ACTIVE} \]
"BUILD UP" OUTPUT FROM DC, SMALL SIGNAL "PIECES"

AT INPUT:

\[
\frac{V_{IN\text{ TOTAL}}}{V_{IN}} = +1.06\,V + (0.1\,V) \sin \omega t
\]

\[
\frac{V_{OUT\text{ TOTAL}}}{V_{OUT}} = +2.49\,V + (-1.11\,V) \sin \omega t
\]

OUTPUT \downarrow \quad \downarrow \text{CHANGE} \quad \downarrow \text{PROPORTIONAL GAIN}

\[
V_{OUT} = \frac{(gmR_o)V_{IN}}{-11.1}
\]

FROM SMALL-SIGNAL ANALYSIS

IN GENERAL

\[
\frac{V_{OUT\text{ TOTAL}}}{V_{OUT}} = \frac{V_{OUT\text{ DC OPERATING POINT}}}{V_{OUT\text{ SMALL SMALL SIGNAL GAIN}}} + A_v\frac{V_{IN\text{ SMALL SIGNAL INPUT}}}{V_{IN}}
\]

SKETCH \(V_{OUT} \)

\[+5\,V \quad +3.60\,V \quad +2.49\,V \quad +1.38\,V \quad 0\,V \]

\[t \]

CHECK MAX, MIN PEAKS:

MEETS ACTIVE REGION CONDITIONS FOR ALL \(V_{OUT} \)

WHAT IF \(V_{IN} = (1.0\,V) \sin \omega t \)? SMALL SIGNAL MODEL PREDICTS

\[
V_{OUT} = 2.49 + (-11.1) \sin \omega t
\]

CUTOFF \(\leftrightarrow \) MAX PEAK = 13.6 \, V ?

CHECK PEAK VALUES

TRIODE \(\leftrightarrow \) MIN PEAK = -8.6 \, V ?
\[g_m = \frac{dI_D}{dV_{GS}} \]

\[I_D = \frac{\mu C_0 W}{2} \left(V_{GS} - V_{TH} \right) \]

\[\frac{dI_D}{dV_{GS}} = \mu C_0 \frac{W}{L} \left(V_{GS} - V_{TH} \right) = g_m \]