SMALL SIGNAL RESISTANCE OF DIODE CONNECTED MOSFET

\[V_{DD} \text{ IN SMALL SIG } = 0V \]

REPLACE WITH SMALL SIGNAL MODEL

"IMPEDANCE AT A NODE" PROCEDURE

1. APPLY \(V_x \)
2. CALCULATE \(i_x \)
3. \(r_x = \frac{V_x}{i_x} \)

2. KCL AT GATE
\[i_x = g_m V_{gs} + \frac{V_x}{r_0} \]

KVL AROUND GATE; \(V_{gs} = V_x \)

3. \(r_x = \frac{V_x}{i_x} \)
\[\frac{V_x}{i_x} = \frac{1}{g_m + \frac{1}{r_0}} = \frac{1}{g_m} || r_0 \]

USUALLY \(r_0 \gg \frac{1}{g_m} \)

\[r_x \approx \frac{1}{g_m} \]

SMALL SIGNAL MODEL FOR DIODE CONNECTED MOSFET (NMOS OR PMOS) IS \(\frac{1}{g_m} \):

\[\text{small signal model} \quad \frac{1}{g_m} \]