Resistance
Mobility
Ohm's Law
Circuit Element: Resistor
Resistor as Sensor

Textbook: Ch. 2

Resistance

Relevant Properties
- Length L
- Cross-sectional Area A
- Carriers Density N
- Unit Vol Mobile Charge Carriers
- Mobility for Charge Carriers μ

Apply Voltage V Across Material
What Current I Flows Through in Response?

Assume: Material Uniform
Outside $(V, Wires)$ Ideal

Definition of Current
- All Mobile Charge in Block
 - $I = \frac{dQ}{dt}$
 - $\frac{\Delta Q}{\Delta t}$

Choose Any Consistent $\Delta Q, \Delta t$ Make Math Easier
CHARGE IN A MATERIAL: MOBILITY

FREE SPACE

FIELD
\(\varepsilon \rightarrow \)

\(-q_e \)

\(\vec{F} = -q_e \vec{E} \)

FORCE: \(e^- \)

ACCELERATES

MATERIAL

\(\varepsilon \rightarrow \)

"LATTICE" OF ATOMS

ACCELERATED MOTION

"RESET" BY RANDOM COLLISIONS

MOBILITY

DEPENDS ON TEMPERATURE MATERIAL

\(V_d = \mu \varepsilon \)

GO FASTER

PUSH HARDER

AVERAGE MOTION

\(\vec{v}_d \) AVG VELOCITY

\(V \)

\(\text{cm} \)

\(\text{sec} \)
V-I CHARACTERISTIC

\[\Delta Q = \frac{N A L q_e}{V_{\text{tot}}} \]

\[\Delta Q = q_e N A L \quad [2] \]

TIME

\[V_d = \frac{L}{\Delta t} \quad \text{MACRO} \quad [3] \]

MICRO: \(V_d \) FROM \(E \) FIELD

\[V_d = \mu E \quad [4] \]

\(E \) FROM APPLIED \(V \)

UNITS OF \([E] = \left[\frac{V}{m} \right] \)

\[E = \frac{V}{L} \quad [5] \]

SOLVE FOR \(\Delta t \)

\[V_d = \frac{MV}{L} \]

MASSAGE

\[I = \frac{q_e N A L \mu V}{L^2} \]

\[I = \left(\frac{q_e N A \mu}{L} \right) V \]

PROPORTIONAL!

OHM'S LAW: \(V = I R \)

\[R = \frac{V}{I} \]

\[R = \frac{L}{2e N A \mu} \]
CIRCUIT ELEMENT: RESISTOR

Ohm's Law

\[V_R = I_R \times R \]

Voltage drop across resistor

\[\mathbf{\sigma} = \begin{bmatrix} \frac{V}{A} \end{bmatrix} \]

Resistance

\[R = \frac{1}{qeN\mu} \cdot \frac{L}{A} \]

Material properties

Resistivity

\[\rho = \frac{1}{q\mu N} \]

\{eqn 1.10 in book\}

\[\mathbf{\rho} = [\sigma \cdot \text{cm}] \]
RESISTOR AS SENSOR

WHAT HAPPENS TO R IF ...

STRETCH?

\[L \uparrow \Rightarrow A \downarrow \Rightarrow R^{\uparrow \uparrow} \]

MECHANICAL (GEOMETRY)

\[R = \frac{1}{\rho \mu N A} \]

STRAIN GAGE

HEAT UP?

\[T \uparrow \Rightarrow \mu \downarrow \Rightarrow R^{\uparrow} \]

POSITIVE TEMPERATURE COEFFICIENT w/ PTC

SOME MATERIALS

\[\Rightarrow \downarrow \]

\[T \uparrow \Rightarrow N^{\uparrow} \Rightarrow R^{\downarrow} \]

FREE CARRIERS

NEGATIVE TEMP COEFF w/ NTC

SHINE LIGHT?

PHOTON ENERGY FREES e- FROM BOND

\[N^{\uparrow} \Rightarrow R^{\downarrow} \]

PHOTO RESISTOR