Superposition Analysis Steps

1. Set all independent sources to zero
 - V source \rightarrow short circuit
 - I source \rightarrow open circuit
2. Turn on each independent source, one at a time.
3. Calculate response due to each individual independent source.
4. For total response, add up individual contributions from each source.

Superposition Cautions

Only applies to linear systems!
Do not turn off dependent sources!

Why Use Superposition?

Usually simplifies analysis when circuit has many independent sources
Explicitly shows path from each source to output: "assign blame"
(signal, noise)

\[
\text{OUT} = \left(\text{signal FROM 1} \right) + \left(\text{interf FROM 2} \right) + \left(\text{noise FROM 3} \right)
\]
1. Determine V_L for the following circuit:

2. Determine V_L for the following circuit:

ECB2019 Quiz
1. Determine V_L for the following circuit:

\[V_L = \frac{2V \cdot 50 \Omega}{100 \Omega} = 1.0V \]

2. Determine V_L for the following circuit:

\[V_L = 2V \]
STEP 1: FIND OPEN CIRCUIT VOLTAGE

USE NODAL ANALYSIS

KCL AT \(V_1 \):
\[
\dot{i}_1 = 20 \text{mA} + \dot{i}_2 + \dot{i}_3
\]

OHM'S LAW
\[
\frac{5V-V_1}{50\Omega} = 20\text{mA} + \frac{V_1}{50\Omega} + 0
\]

SOLVE FOR \(V_1 \)
\[
5V-V_1 = 1V + V_1
\]
\[
(5V-1V) = 2V_1
\]
\[
V_1 = +2V
\]

KVL \(V_1 \rightarrow V_{OC} \): 0V DROP ON \(R_3 \)
\[
V_{OC} = V_1 = +2V
\]

STEP 2: FIND \(R_{eq} \) WITH ALL INDEPENDENT SOURCES = 0

V SOURCE: \(\Rightarrow \) 0V (SHORT)

I SOURCE: \(\Rightarrow \) 0A (OPEN)

REDRAW

REDRAW AGAIN

\[
\text{Re}_L = 25\Omega
\]

\[
50\Omega || 50\Omega = 25\Omega
\]

\[\text{Re}_L = 25\Omega + 25\Omega = 50\Omega\]
Find \(V_{OC} \) (for Thevenin) using Superposition

1. **Turn off 20 mA source**
 - **Voltage Divider**
 - \(V_{OC} = V_1 = +5V \left(\frac{50}{50 + 50} \right) = +2.5V \)
 - \(V_{OC} (+5V) = +2.5V \)
 - **ADD by Superposition**
 - \(V_{OC} = V_{OC} (+5V) + V_{OC} (20mA) \)

2. **Turn off +5V; Short**
 - **Parallel**: \(50\Omega || 50\Omega = 25\Omega \)
 - \(V_{OC} = (20mA) (25\Omega) = -0.5V \)

\(V_{OC} = V_{OC} (+5V) + V_{OC} (20mA) = +2.5V + (-0.5V) = +2V \) \(\checkmark \)

ECE2019 Superposition Example
WITH SYMBOLIC MATH

\[V_{oc} = \left(\frac{R_2}{R_1 + R_2} \right)(+5V) + (R_1/R_2)(-20mA) \]

- \(R_1/R_2 \) RATIO
- TELLS HOW \(+5V\) INFLUENCES OUTPUT
- HOW \(20mA\) INFLUENCES OUTPUT

\[R_{eq} = R_3 + R_1/R_2 \]

ANALYSIS: GIVEN \(R_1, R_2, R_3 \) VALUES FIND \(V, I, \ldots \)

DESIGN: CHOOSE \(R_1, R_2, R_3 \) TO GET A DESIRED \(V_{oc}, R_{eq} \) (OR \(V_L \) WITH \(R_L, \ldots \))
YO DAWG, I HERD YOU LIKE THEVENIN EQUIVALENTS

SO I PUT A THEVENIN EQUIVALENT IN YOUR THEVENIN EQUIVALENT SO YOU CAN SIMPLIFY WHILE YOU SIMPLIFY.

ECE2019 Repeated Thevenin Example